Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Cell Biochem ; 120(3): 4158-4171, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30320914

RESUMO

Endoplasmic reticulum stress is a cellular phenomenon that has been associated with metabolic disorders, contributing to the development of obesity, fatty liver disease, and dyslipidemias. Under metabolic overload conditions, in cells with a high protein-secretory activity, such as hepatocytes and Langerhans ß cells, the unfolded protein response (UPR) is critical in to maintain protein homeostasis (proteostasis). UPR integrated by a tripartite signaling system, through activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase (PERK), and inositol-requiring enzyme 1, regulates gene transcription and translation to resolve stress and conserve proteostasis. In the current study, we demonstrated in hepatocytes under metabolic overload by saturated palmitic and stearic fatty acids, through activation of PERK signaling and CCAAT-enhancer-binding protein homologous protein (CHOP) transcription factor, an association with the expression of cyclooxygenase 2. More important, isolated exosomes from supernatants of macrophages exposed to lipopolysaccharides can also induce a metainflammation phenomenon, and when treated on hepatocytes, induced a rearrangement in cholesterol metabolism through sterol regulatory element-binding protein 2 (SREBP2), low-density lipoprotein receptor (LDLR), apolipoprotein A-I, and ABCA1. Moreover, we demonstrate the cellular effect of terpene-derived molecules, such as cryptotanshinone, isolated of plant Salvia brandegeei, regulating metainflammatory conditions through PERK pathway in both hepatocytes and ß cells. Our data suggest the presence of a modulatory mechanism on specific protein translation process. This effect could be mediated by eukaryotic initiation factor-4A, evaluating salubrinal as a control molecule. Likewise, the protective mechanisms of unsaturated fatty acids, such as oleic and palmitoleic acid were confirmed. Therefore, modulation of metainflammation suggests a new target through PERK signaling in cells with a high secretory activity, and possibly the regulation of cholesterol in hepatocytes is promoted via exosomes.


Assuntos
Colesterol/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Biossíntese de Proteínas , eIF-2 Quinase/metabolismo , Animais , Canfanos , Ciclo-Oxigenase 2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Exossomos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Inflamação/tratamento farmacológico , Células Secretoras de Insulina/metabolismo , Camundongos , Panax notoginseng , Fenantrenos/farmacologia , Fenantrenos/uso terapêutico , Células RAW 264.7 , Ratos , Salvia miltiorrhiza , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Tunicamicina/farmacologia
2.
Int J Mol Sci ; 19(9)2018 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-30149660

RESUMO

Ceramides are key lipids in energetic-metabolic pathways and signaling cascades, modulating critical physiological functions in cells. While synthesis of ceramides is performed in endoplasmic reticulum (ER), which is altered under overnutrition conditions, proteins associated with ceramide metabolism are located on membrane arrangement of mitochondria and ER (MAMs). However, ceramide accumulation in meta-inflammation, condition that associates obesity with a chronic low-grade inflammatory state, favors the deregulation of pathways such as insulin signaling, and induces structural rearrangements on mitochondrial membrane, modifying its permeability and altering the flux of ions and other molecules. Considering the wide biological processes in which sphingolipids are implicated, they have been associated with diseases that present abnormalities in their energetic metabolism, such as breast cancer. In this sense, sphingolipids could modulate various cell features, such as growth, proliferation, survival, senescence, and apoptosis in cancer progression; moreover, ceramide metabolism is associated to chemotherapy resistance, and regulation of metastasis. Cell⁻cell communication mediated by exosomes and lipoproteins has become relevant in the transport of several sphingolipids. Therefore, in this work we performed a comprehensive analysis of the state of the art about the multifaceted roles of ceramides, specifically the deregulation of ceramide metabolism pathways, being a key factor that could modulate neoplastic processes development. Under specific conditions, sphingolipids perform important functions in several cellular processes, and depending on the preponderant species and cellular and/or tissue status can inhibit or promote the development of metabolic and potentially breast cancer disease.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Metabolismo dos Carboidratos , Ceramidas/metabolismo , Animais , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/metabolismo , Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Feminino , Humanos , Inflamação/complicações , Inflamação/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Metástase Neoplásica , Transdução de Sinais , Esfingolipídeos/metabolismo
3.
Int J Mol Sci ; 16(8): 17193-230, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26225966

RESUMO

Highly sophisticated mechanisms that modulate protein structure and function, which involve synthesis and degradation, have evolved to maintain cellular homeostasis. Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious cell processes. Therefore in recent years the etiology of a great number of diseases has been attributed to failures in mechanisms that modulate protein structure. Interconnections among metabolic and cell signaling pathways are critical for homeostasis to converge on mechanisms associated with protein folding as well as for the preservation of the native structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive unfolded protein response (UPR). Therefore, taking this into consideration, a key part of this paper is developed around the protein folding phenomenon, and cellular mechanisms which support this pivotal condition. We provide an overview of chaperone protein function, UPR via, spatial compartmentalization of protein folding, proteasome role, autophagy, as well as the intertwining between these processes. Several diseases are known to have a molecular etiology in the malfunction of mechanisms responsible for protein folding and in the shielding of native structure, phenomena which ultimately lead to misfolded protein accumulation. This review centers on our current knowledge about pathways that modulate protein folding, and cell responses involved in protein homeostasis.


Assuntos
Chaperonas Moleculares/metabolismo , Desdobramento de Proteína , Resposta a Proteínas não Dobradas , Animais , Homeostase , Humanos , Chaperonas Moleculares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...